
UniConf, GConf, KConfig, D-BUS, Elektra, oh my!
or DConf — a configuration framework for everyone

Simon Law
Net Integration Technologies

sfllaw@nit.ca

Patrick Patterson
Net Integration Technologies

ppatters@nit.ca

Abstract

We’ve been watching the discussions surrounding DConf with interest and amusement.
Coincidentally, we’ve been talking amongst ourselves and have been saying, “wouldn’t
it be nice if there were just some way to glue all these different applications together?”
And then we realize that we’ve been asking a rhetorical question. In this paper, we’re
going to recap what people want in a universal configuration system. Then we’re going
to show you the one we’ve built; because we’re kinda sassy that way.

N.I.H.

We’re going to start from the assertion that
nearly every user application needs to store
preferences. The traditional way of doing this
in a POSIX environment is by storing them in
dot-files. These are simple text-based configu-
ration files, which look sort of like Figure 1.

xterm*eightBitInput: false
xterm*eightBitOutput: true
xterm*scrollTtyOutput: false
xterm*saveLines: 500

Figure 1: An .Xresources file

Throughout the software world, there are many
different types of configuration systems. Some
of them are based on simple line-delimited
text files, others are complex hierarchicalXML
structures, and there are even those that are

Turing-complete programming languages. Pro-
grammers seem to have a lot of fun invent-
ing new types of configuration formats, as ev-
idenced by the wide variety that we see. We
must admit, this hobby is so much fun that we
had to restrain ourselves from writing one of
our own.

For the purposes of our discussion here, we’re
going to limit ourselves to the most common
type of configuration system: one that stores
unordered key-value pairs. As an example, we
can look at GConf1 which keeps its configura-
tion in XML -files similar to the one shown in
Figure 2.

It is all very nice when each application has its
own configuration files. It feels like it’s the mas-
ter of its own domain, and that’s a mighty splen-
did feeling. What happens, however, when

1http://www.gnome.org/projects/gconf/

1



<?xml version="1.0"?>
<gconf>
<entry name="focus_mode"

mtime="1089315055"
type="string">

<stringvalue>sloppy</stringvalue>
</entry>
<entry name="num_workspaces"

mtime="1092539650"
type="int" value="1">

</entry>
</gconf>

Figure 2: A GConf file

you want certain applications to talk to each
other? Or if sane global defaults ought to be
provided? Then things start getting messy. You
could write an application that knows how to
divine information from another application’s
configuration files, much like Mozilla Firefox2

does to Seamonkey3. Or if you’ve ever been
a systems administrator, you can probably re-
member writing a script that migrates config-
uration data from one system to another. Or
if you maintain a desktop environment, maybe
you’ve helped to write a configuration system
like KConfig4.

All three of these options don’t seem to be
very appealing. Which is why people have con-
verged on freedesktop.org in the hopes that a
unified configuration system can be developed.
This effort, currently called DConf, has been a
difficult one. Not only is implementation a hur-
dle, but getting people to agree on a standard
configuration format has been tough. After all,
nobody wants to change software that already
works — an understandable position to take.

2http://www.mozilla.org/products/firefox/
3http://www.mozilla.org/products/mozilla1.x/
4http://www.kde.org/

Wherefore art thou?

Before we start to consider a unified configura-
tion system, we should probably ask ourselves,
“why do we want one anyway?” After all, it’s
going to be a lot of work to implement one. Not
only do you have to design one that’s techni-
cally superior, you also have to convince the
rest of the world to like it. This, my friends,
is no easy task.

For starters, it would be very nice if there were
one central interface for manipulating a user’s
configuration files. You, as a user, really ought
to be perfectly oblivious as to how the configu-
ration is stored, while still able to modify it to
your heart’s content.

Say you’re a system or network administrator.
Right now, changing the global configuration
requires digging into the/etc directory to find
the correct files to twiddle. And that’s only for
one machine. Woe to the admin who has a clus-
ter of machines. Wouldn’t it be great if all the
settings were stored in one central place, acces-
sible through one interface; rather than a dozen
different places in a hundred different ways?

Perhaps you’re a programmer who just wants
to solve a very interesting problem, and doesn’t
want to write yet another configuration system.
It sure would be nice if all the correct seman-
tics were worked out in advance, readily avail-
able to use in a standard library. And it would
be really nice if you could slowly adopt this li-
brary, instead of having to restructure existing
programs.

Maybe you’re a software distributor. Right now,
updating configuration files politely requires
writing a parser to understand the files. If only
there were a standard interface to make the min-
imal change without having to write configura-
tion parsers in shell script.

2



Shopping list

What kinds of properties would make a good
configuration framework? Well, here’s a simple
list of desirable properties that we’ve come up
with:5

• Stackable storage back-ends
• Standalone and dæmonized modes
• Low-latency network-transparent protocol
• Simple programming interface
• Permissions and access control
• Notifications of changes
• Transactions and rollbacks
• Global policy inheritance
• Free beer

All very desirable properties, and nicely
enough, most of them are quite tractable.

Columns and beams

It just so happened that we were solving a prob-
lem that needed a configuration database. So
we wrote one — and realized that we had done
it wrong. We brushed ourselves off, picked our-
selves back up, and wrote the UniConf system.

UniConf was designed to be very simple, so
that anyone can understand it. It was also de-
signed to be very powerful, so that anyone can
extend it. Simplicity, elegance, and power are
not easy to get right, so we had to think hard
about our previous mistakes.

We should begin by describing the architecture
of the UniConf system. Figure 3 shows how
the various pieces fit together. The library pro-
vides many stackable back-end modules which
we callgenerators.

Some of these generators store data directly,
for instance thetemp: generator stores data

5With plenty of help from xdg@lists.freedesktop.org

Figure 3: UniConf architecture

in core. Some generators are transports, the
unix: generator talks over Unix domain sock-
ets. These generators are stackable, which
means that you can layer them on top of each
other, like cache: which maintains a fast in-
core cache of its underlying generator.

You’ll notice that we mentioned Unix domain
sockets. Well, there must be something listen-
ing on the other side, so we have written a dæ-
mon that listens for incoming connections. You
can see how a clients are connected to UniConf
servers in Figure 4. Notice that although some
of them are connected locally throughD-BUS
and Unix sockets, others can be connected re-
motely viaSSL-over-TCP.

By having remote UniConf servers, one can
easily create an architecture that distributes con-
figuration data from a central master to end-
user slave machines. This can be useful for a
multinational enterprise that needs to propagate
settings to each of its desktops. Or it can be use-
ful to the end-user who wants her browser book-
marks to remain synchronised on her desktop
and her laptop.

3



Figure 4: UniConf network

The choice to work standalone, locally with a
server, or remotely with a server should remain
with the user. To facilitate this, the generator
stacks are not hard-coded in a UniConfiscated
program. Instead, the location of its configu-
ration is specified using amoniker string. To
connect to a remote configuration, the moniker
string to construct looks like

ssl:juin.nit.ca:4113

which tells UniConf to connect to juin.nit.ca on
port 4113 usingSSL-over-TCP.

Because the UniConf system is built upon
stackable generators, thessl: generator knows
nothing about caching or reliability. So we have
written other generators that do just that. The
canonical way to connect to a remote UniConf
source is to write

cache:retry:ssl:juin.nit.ca:4113

which means to cache reads and writes to the
underlying generator; as well as reconnect to
that generator, if it ever disappears.

Mapping the space

Now that we’ve gone over how to configure a
UniConf system, what about getting at the data
inside of one? Since almost all configuration
systems store unordered key-value pairs, that’s
what we used as the domain for UniConf. Each
key stored in the system must have one value
associated with it. As well, each key can have
zero or more child keys. We call this struc-
ture aUniConf tree.A delightful property that
emerges is that any child of a key are also Uni-
Conf trees.

In order to address each key, we decided to
adopt the same naming scheme as the Unix
filesystem. Keys are forward-slash delimited
and are relative to a particular UniConf tree. A
partial UniConf tree for aPOSIX name service
would look somewhat like Figure 5.

users = {}
users/sfllaw = {}
users/sfllaw/uid = 1000
users/sfllaw/gid = 1000
users/sfllaw/homedir = /home/sfllaw
users/sfllaw/shell = /bin/bash
groups = {}
groups/sfllaw = {}
groups/sfllaw/gid = 1000
groups/sfllaw/users = {}
groups/sfllaw/users/sfllaw = 1
groups/sfllaw/users/ppatters = 1

Figure 5: UniConfiscated name service

Unlike the Unix filesystem, there are no abso-
lute paths in UniConf. This makes UniConf
closed under composition: any sub-tree is a
first-class tree of its own. We don’t provide
hard links, to inhibit cycles from being created.

There are three operations that can be per-
formed:setting, geting, anditeration over

4



UniConf keys. Aset operation replaces the
value of the key, creating it and its parents if
necessary. Aget operation returns the value
of a UniConf key, returning a null value if it
doesn’t exist. Aniteration operation pro-
vides a list of sub-keys that exist. With these op-
erations, it is possible to programmaticly build
and traverse a UniConf tree.

To control access to parts of the UniConf tree,
we support Unix-style permissions on individ-
ual keys. The standard read, write, and exe-
cute bits apply as one would expect. These
permissions are enforced by theperm: genera-
tor, which controls access to its underlying gen-
erator. Since we’ve implemented permission
control in the form of a generator, if you need
another schema for access control, a generator
could be written to provide those semantics.

Ring ring!

For applications that only source their config-
uration files on start, this is sufficient func-
tionality. But UniConf was built to glue to-
gether local and remote configuration systems,
so we needed a low-latency method to propa-
gate changes to the configuration tree, thereby
maintaining consistency across the entire Uni-
Conf network. We decided to implementnoti-
fications, both in the generators and exposed to
the application programming interface.

Your application can ask to be notified when a
particular UniConf sub-tree changes by provid-
ing a callback function. When it does, your ap-
plication will be notified by the callback, which
will be provided with the key that was modi-
fied. The callback function should effect the
change immediately or queue up the key if it
needs more time. In this way, your application
doesn’t need to poll its configuration files for

changes. Nor will the user need to press keys to
refresh the configuration manually. And it cer-
tainly means that the user won’t have to restart
your application.

Keep in mind that your program can be com-
pletely ignorant of the notification system and
it will work just as well. But using notifications
will make it seem more responsive. For graphi-
cal applications, instant reflection of configura-
tion changes is very intuitive. And for dæmons,
you no longer need to implementSIGHUP han-
dlers in order to get reasonable behaviour.

Atomic generation

UniConf is designed to work asynchronously.
By that, I mean that aftersetting a value, you
may not see the same value whengetting it im-
mediately afterwards. To guarantee synchronic-
ity, UniConf would be very slow, since the data
would have to propogate throughout the entire
network before aset could be committed.

Instead, you can rely on generators to provide
a sane view of the underlying UniConf tree.
For instance, using thetransaction: gener-
ator makes UniConf appear synchronous. That
is, after performing aset, aget will return the
previouslyset value.

It’s called thetransaction: generator for a
good reason, though. It provides database-like
atomic transactions for the UniConf tree that it
wraps. Your application canset several val-
ues, and then decide to commit them or roll-
back them. We find rollbacks very useful for
error-handling. For back-ends that don’t sup-
port atomic commits, the generator tries its best
to set values all at once, so you should treat
atomic commits as an optimization, as opposed
to a guarantee.

5



Shaking hands

The UniConf network protocol is defined as the
set of operations that are network-based client
generators talk when they connect to a Uni-
Conf server. It’s designed as an asynchronous
pipelined protocol, so there’s very little latency.
There are five basic operations:

set sends a key-value pair to the remote
server.

get retrieves the value associated with a key,
from the remote server.

subt retrieves a list of sub-keys that are chil-
dren of a key. This is used to implement
iteration.

commit commits changes to storage.

refresh refresh contents from storage.

With these five, you can create a general config-
uration system that stores key-value pairs. We
also have three operations that are performance
optimizations, and do not need to be supported
by clients:

del deletes the key-value pair, and all their
children.

hchild queries the remote server for whether
a key has any children.

setv sets multiple key-value pairs.

Now the server can respond to these operations
with one of the following:

OK The operation succeeded.

FAIL The operation failed.

UNKNOWN The operation is unknown. This must
be returned by servers when they receive a
command they don’t understand.

ONEVAL A reply to aget.

PART A partial reply, used withsubt.

CHILD A boolean reply to anhchild query.

Finally, the server has two events it can send to
a client. The client is not expected to respond
to them:

HELLO On connection, the server sends the pro-
tocol version.

NOTICE Notification that a key-value pair has
changed.

We provide these operators in ourunix:, udp:,
tcp:, ssl:, and dbus: transports. As such,
you don’t actually need to link in the UniConf
library at all, as long as your application is able
to understand the client side of the protocol.

Sales pitch

If you’re writing a new application, we exhort
you to consider UniConf as your native con-
figuration system. Just look at the advantages:
you don’t have to implement it from scratch,
you get a tree of key-value configuration items
which you can access from nearly everywhere.
It provides advanced features like notifications
and transactions. Not only that, you’re not tied
in to any particular format because UniConf is
extensible.

For maintainers of existing software, migrating
to UniConf is not particularly painless. It’s easy
if you’re already using a configuration library
like GConf, there’s a UniConf generator that

6



communicates with GConf already. If you’re
already using KConfig, there’s a generator for
that as well.

If you’ve got your own configuration format,
however, migrating is still rather simple. You
could decide to use the UniConf library na-
tively, and pick up various features as you need
them. Or you could write a UniConf genera-
tor that understands your configuration system,
and interact with a UniConf network that way.
Even a hybrid approach is attractive, to transi-
tion your users from one system to the other.

Finally, if you have a lightweight application
that can’t afford to link in large libraries, it can
choose to participate in a UniConf network by
means of Elektra, or by speaking theD-BUS
protocol.

In short, there are few technical reasons that
would prevent application developers from

adopting UniConf as the unified configura-
tion system. We hope that this simple, well-
designed, extensible library will be widely ac-
cepted. Mostly because we want people to
stop worrying about simple things like config-
uration files, so that they can worry about diffi-
cult things like writing usable desktop. Or argu-
ing about a universal configuration schema.

Acknowledgments

We’d like to thank all the people who have
hacked on UniConf to make it the useful piece
of software it is today.

To be specific, thanks go to Jeff Brown,
James deBoer, William Lachance, Andrew
MacPherson, Joe Mason, Avery Pennarun,
Pierre Phaneuf, Tristan Schmelcher, Dan
Taylor, and Peter Zion.

7


